

NYISO Climate Change Phase II Study

Analysis Updates and Discussion of Climate Cases

June 4, 2020

BOSTON CHICAGO DALLAS DENVER LOS ANGELES MENLO PARK NEW YORK SAN FRANCISCO WASHINGTON, DC • BEIJING • BRUSSELS • LONDON • MONTREAL • PARIS

Today:

- Review of 2040 Resource Set Development
- Comparison of Analysis Group Resource Set with Grid in Transition Study Resource Set
- Overview of Climate Disruption Cases
- Example Outputs for Climate Disruption Cases
- Appendix: Additional Comparison of Analysis Group Resource Set with Grid in Transition Study Resource Set (Reference Case)

Review of 2040 Resource Set Development

Review of 2040 Resource Set Development

Review of 2040 Resource Set Development

- Climate Change Phase II study requires assumption of specific "resource set" as reliable starting point from which to review more stressed system conditions due to disruptions from climate change
- There are many potential ways to meet 2040 state policy requirements, no single presumed resource set is "correct"
 - Feasible resource sets could be different in many ways (e.g., renewables/transmission focused versus dispatchable generation focused)
- In the previous presentation, we identified one feasible resource set for the purpose of the Climate Change Phase II Study
 - Our resource set focuses on maximum renewable contributions and transmission as needed to match renewable output to load
- We recognize that there are other studies underway that have a different focus – e.g., the Grid in Transition effort represents a resource outcome with a different focus, and leads to a different resource set

Review of Load Inputs

- Three 30-day modeling periods: Winter (January 2040), Summer (July 2040), and Off-peak (April 2040)
- Phase I scenarios referenced in this presentation:
 - <u>Reference Case</u> Load growth based on Gold Book 2019 Estimates with 0.7° F per decade average temperature increase
 - <u>CLCPA Case</u> 85% reduction in overall GHG by 2050, large scale electrification in residential and commercial sectors; 85% reduction in transportation GHG

Review of 2040 Resource Set Development

2040 Analysis Group Resource Set Development

- Development process for Climate Change Phase II resource sets for reference and CLCPA load scenarios:
 - 1. Start with CARIS 2019 Phase I 70/30 resources
 - 2. Increase nameplate capacity of renewable generation such that the aggregate MWh of generation from renewable resources is larger than aggregate load.
 - a. Solar or wind resources increased incrementally based on "marginal benefit" of each resource type, which differs based on peak season within load scenario
 - 3. Reshape daily load based on price responsive demand for EV load
 - 4. Relax transmission constraints to bind in less than 10% of modeling period hours
 - 5. Increase energy storage in locations designed to optimize use of renewable generation
 - 6. Assume dispatchable generation as backstop, up to minimum required quantity to meet loads in most constrained season (summer for reference case, winter for CLCPA case)
 - a. Generic dispatchable generation used only if and when renewables-based resource set insufficient to meet demand

Additional Modeling Changes

- Other changes to load/generation modeling:
 - Revisions to hydroelectric generation profile to account for daily cycle at Niagara; reduces hydro capacity factor overall
 - Battery now assumes 8 hour storage throughout state
 - Explicit modeling of Gilboa pumped storage using same logic as other battery storage
 - Increase of Zone D imports to 1,500 MW to account for all Hydro Quebec lines

Updated Reference Case Results (Summer 2040)

ANALYSIS GROUP

Effect of Transmission on Load Losses

- Development focuses on renewables and transmission, with goal to meet as much load as possible with renewable generation
- Additional quantities of renewables *without* relaxation of existing transmission constraints would lead to renewable curtailments and hours with local losses of load
- Without transmission, reliable solution must increase use of assumed dispatchable generation

Effect of Transmission on Generic Dispatchable Generation

ANALYSIS GROUP

Revised Reference Case and CLCPA Resource Set

	_	Reference Case		CLCPA Case		
		After Resource	Percent of	After Resource	Percent of	
Resource Type	NYISO Base	Additions	Base	Additions	Base	Technical Potential
Land-Based Wind	8,761 MW	19,712 MW	225%	35,200 MW	402%	35,200 MW ^[1]
Offshore Wind	9,000 MW	20,250 MW	225%	21,063 MW	234%	21,063 MW ^[2]
Grid-Connected Solar	19,631 MW	34,354 MW	175%	34,354 MW	175%	1,350,000 MW ^[1,3]
Behind-the-Meter Solar	Case Specific	6,351 MW	175%	9,518 MW	175%	50,000 MW ^[1]
Battery Energy Storage	3,900 MW	7,800 MW	200%	12,675 MW	325%	
Generic Dispatchable	N/A	16,875 MW	N/A	29,260 MW	N/A	

Note:

[1] Technical Potential calculated by NREL for land-based wind and solar based on real-world geographic constraints and system performance, but not economics.

[2] Technical Potential calculated from BOEM and DOE data assumes maximum 3 MW/km² wind capacity installed in 7,021 km² New York Bight Lease Areas.

[3] Technical Potential calculated by NREL for grid-connected solar is an extreme upper bound given land use assumptions, and is likely infeasible in practice.

Sources:

[1] NREL, Estimating Renewable Energy Economic Potential in the United States: Methodology and Initial Results, August 2016, Appendices A and F.

[2] NREL, Rooftop Solar Photovoltaic Technical Potential in the United States: A Detailed Assessment, January 2016.

[3] Bureau of Ocean Energy Management, New York Bight, available at https://www.boem.gov/renewable-energy/state-activities/new-york-bight.

[4] Department of Energy, Computing America's Offshore Wind Energy Potential, September 9, 2016.

Note that wind generation is limited by technical potential in NY in CLCPA case

CLCPA Case Results (Winter 2040)

ANALYSIS GROUP

CLCPA Case Results (Summer 2040)

ANALYSIS GROUP

Comparison of Analysis Group Resource Set with Grid in Transition Study Resource Set

Comparison of Analysis Group Resource Set with Grid in Transition Study Resource Set

Overview of Grid in Transition Study

- Grid in Transition Study started in Q1 2020 to analyze challenges with current NYISO market structures related to the transition to a zero-emissions grid with high levels of intermittent renewable resources and distributed generation
- End goal is to explore possible future resource mixes. This will then lead to a review of possible market design improvements so that market signals are consistent with the requirement to maintain system reliability
- *Grid in Transition* is meant to be an economic study
- The Brattle Group is running a model of economic investment and retirements of power plants to identify the potential path leading to a resource mix through 2040
- Question: What are the impacts of the Grid in Transition resource mix in 2040 during winter, summer, and shoulder seasons when used in the Analysis Group reliability model?

Comparison of Resources – CLCPA Demand Case

Comparison of CLCPA Case 2040 Nameplate Capacity (MW)

Grid in Transition Resource Set

ANALYSIS GROUP

Climate Change Phase II Resource Set Difference

NYS Total (MW) NYS Total (MW) NYS Total (MW) **Resource Type** [A] **Resource Type** [B] [B] - [A] 5,018 4,486 Hydro -532 Renewable Gas Total 33,702 **Dispatchable Total** 29,270 -4,433 Nuclear Nuclear 2,156 3.364 +1.2081,171 Pumped Storage Pumped Storage 1,170 -1 Grid-Connected Solar Grid-Connected Solar 34,354 31,669 +2.685**BTM Solar** 6.435 **BTM Solar** 9.518 +3.083Storage 2-Hour 8,194 Storage 4-Hour 5,912 **Battery Storage** 12.675 -1.432Offshore Wind Offshore Wind 25,102 21.063 -4,039 Land-based Wind Land-based Wind 23,255 35,200 +11.9451,100 2,810 Imports Imports +1,710Demand Response + **Price Responsive** 4,500 5.236 +736Flexible Load **Demand - Summer** 148,216 159,146 +10.930

Notes:

Total

Hydro

[1] Climate Change Phase II price responsive demand in the winter is 3,412 MW, 1,088 MW less than in Grid in Transition.

[2] Climate Change Phase II model assumes 8-hour storage

Comparison of Transmission – CLCPA Demand Case

Comparison of CLCPA Case 2040 Transmission Limits (MW)

Grid in Transition Resource Set		ource Set	Climate Ch			
		Line Limit (MW)			Line Limit (MW)	Difference (MW)
Transmissi	on Interface	[A]	Transmissi	on Interface	[B]	[B] - [A]
Total East	E to F + E to G	5,500	Total East	E to F + E to G	16,547	+11,047
Total South	E to G + F to G	6,500	Total South	E to G + F to G	17,547	+11,047
Sprain Brook -	I to J	3,900	Sprain Brook -	I to J	9,307	+5,407
Dunwoodie	J to I	2,000	Dunwoodie South	J to I	2,000	+0

Notes:

[1] Climate Change Phase II resource set reflects limits when transmission constraints are relaxed to bind in less than 10% of the hours which would otherwise experience loss of load due to constrained transmission.

[2] Grid in Transition transmission limits are from The Brattle Group, Introduction to GridSim Presentation, March 6, 2020, Slide 21.

Comparison of Resources – CLCPA Case Difference (Climate Impact minus Grid in Transition)

ANALYSIS GROUP

Nameplate Capacity (MW) Resource Type

Hydro

Nuclear

Pumped Ste

Dispatchable Total

Zone F

-203

+0

-5.658

Differences in Climate Phase II vs GIT Resource Sets

- Tradeoff between transmission and dispatchable generation
 - Higher assumed transmission limits in Climate Phase II resource set
 - Higher assumed gas dispatchable resources in *Grid in Transition* resource set
- Location of solar units in *Grid in Transition* concentrated in Zone F, likely due to transmission constraints

Climate Disruption Case Discussion

Climate Disruption Case Discussion

Climate Disruption Case Modeling

- Reminder: Climate impacts will be analyzed using a set of climate cases that affect model input parameters during modeling periods
 - Exact magnitude of climate impacts will be based on Phase I modeling and/or literature review
- Model currently built with selectable short term physical disruptions on system.
 Disruptions include:
 - Load or renewable generation increase/decrease
 - Transmission limit increase/decrease or failure
 - Nuclear generation reduction
 - Reduced initial battery stored energy
- All toggles built with selectable durations, initial hours
 - Impacts can be limited to specific zones or technologies
 - Climate disruption cases will be built from combinations of modeled disruptions

Climate Disruption Initial Case List

Description	Case Adjustments
Multi-day heat wave in summer season	Load Increase Wind Generation Decrease Solar Generation Increase Transmission Limit Decrease
Multi-day cold wave in winter season	Load Increase Wind Generation Decrease Solar Generation Decrease Transmission Limit Decrease
Wind impact (can be different between land-based and offshore)	Wind Generation Decrease
	Solar Generation Decrease
Hurricane impact on NY grid	Generation and transmission outages; recovery over multiple days
	Hydro Generation Decrease/Increase
Batteries only charged to reduced percentage	Reduced starting battery quantities
	DescriptionMulti-day heat wave in summer seasonMulti-day cold wave in winter seasonMulti-day cold wave in winter seasonWind impact (can be different between land-based and offshore)Hurricane impact on NY gridBatteries only charged to reduced percentage

Example of Output Metrics to be Used in Climate Disruption Cases

Example of Output Metrics to be Used in Climate Disruption Cases

Climate Disruption Example Case #1

- This section illustrates the impact hypothetical climate disruption scenarios and provides examples of output metrics
- Starting point: Reference Case load scenario, with reliable starting point resource set
- Example disruption: Heat wave on days 1-7:
 - +5% Increase in load across all zones
 - -5% Decrease in transmission line limits across all zones
 - +20% Increase in solar generation across all zones
 - -20% Decrease in wind generation across all zones and offshore wind

Climate Disruption Example Case #1 Results (Summer 2040)

NYISO Climate Change Phase II Study | June 4, 2020

ANALYSIS GROUP

Climate Disruption Example Case #1 Results (Summer 2040)

- Differences between Reference Case Summer Base and Example Case #1 results over days 1-7, duration of heat wave event:
 - Heat wave results in increased usage of generic dispatchable, battery storage, and price-responsive demand (PRD) to compensate for net loss in renewable generation and loss in transmission capacity

	Reference Summer, Days 1-7 Heat Wave						
	Reference Case Example Case Difference % Difference						
	[A]	[B]	[B]-[A]	[B]/[A] - 1			
NY State Load (Base)	4,318,165 MWh	4,534,073 MWh	+215,908 MWh	+5.0%			
NY State Load (Including Charging)	4,503,783 MWh	4,845,983 MWh	+342,200 MWh	+7.6%			
Output by Resource Type							
Wind	1,565,221 MWh	1,252,177 MWh	-313,044 MWh	-20.0%			
Solar	1,387,089 MWh	1,664,307 MWh	+277,218 MWh	+20.0%			
Generic Dispatchable	228,649 MWh	314,280 MWh	+85,631 MWh	+37.5%			
Battery Storage	205,597 MWh	290,393 MWh	+84,796 MWh	+41.2%			
Price-Responsive Demand	110,292 MWh	139,249 MWh	+28,957 MWh	+26.3%			

Note: Wind includes land-based and offshore wind. Solar includes behind-the-meter and grid-connected solar.

Climate Disruption Example Case #1 Sample Output

Hourly Results Summary

Case Name: Reference Case - Summer

AG

Climate Disruption Example Case #1 Sample Output

Climate Disruption Example Case #2

- Example #2 is constructed to be more extreme, and shows effects of load losses
- Starting point: Reference Case load scenario, with reliable starting point resource set
- Example disruption: High wind storm (west) with transmission and generation disruption/damage on days 1-14:
 - Transmission off in Zones A-C
 - Solar and wind generation off in Zones A-C

Climate Disruption Example Case #2 Results (Summer 2040)

ANALYSIS GROUP

Climate Disruption Example Case #2 Results (Summer 2040)

- Differences between Reference Case Summer Base and Example Case #2 results over days 1-14, duration of high wind storm event:
 - High wind storm results in increased usage of generic dispatchable and priceresponsive demand to compensate for loss in wind and solar generation, loss of battery storage, and loss in transmission capacity

	Reference Summer, Days 1-14						
	High Wind Storm						
	(West)						
	Reference Case Example Case Difference % Difference						
	[A]	[B]	[B]-[A]	[B]/[A] - 1			
NY State Load (Base)	8,723,889 MWh	8,723,889 MWh	+0 MWh	+0.0%			
NY State Load (Including Charging)	9,219,186 MWh	8,931,322 MWh	-287,864 MWh	-3.1%			
Output by Resource Type							
Wind		2,439,185 MWh	-1,057,500 MWh	-30.2%			
Solar	2,663,343 MWh	1,348,898 MWh	-1,314,445 MWh	-49.4%			
Generic Dispatchable	390,546 MWh	1,694,008 MWh	+1,303,462 MWh	+333.8%			
Battery Storage	383,596 MWh	214,729 MWh	-168,867 MWh	-44.0%			
Price-Responsive Demand	234,642 MWh	309,555 MWh	+74,913 MWh	+31.9%			

Note: Wind includes land-based and offshore wind. Solar includes behind-the-meter and grid-connected solar.

Climate Disruption Example Case #2 Sample Output

Hourly Results Summary

Case Name: Reference Case - Summer

Climate Disruption Example Case #2 Sample Output

ANALYSIS GROUP

Climate Disruption Example Case #2 Sample Output

Climate Disruption Cases #1 and #2 Sample Summary

Appendix: Additional Comparison of Analysis Group Resource Set with Grid in Transition Study Resource Set

Appendix: Additional Comparison of Analysis Group Resource Set with Grid in Transition Study Resource Set (Reference Case)

Comparison of Resources – Reference Case

Comparison of Reference Case 2040 Nameplate Capacity (MW)

Grid in Transition Resource Set

ANALYSIS GROUP

Climate Change Phase II Resource Set Difference

NYS Total (MW) NYS Total (MW) NYS Total (MW) **Resource Type** [A] **Resource Type** [B] [B] - [A] 5,018 4,486 Hydro Hydro -532 Renewable Gas Total 20,618 **Dispatchable Total** 22,471 +1,852 Nuclear 2.096 Nuclear 3,364 +1.268Pumped Storage 1,171 Pumped Storage 1,170 -1 Grid-Connected Solar Grid-Connected Solar 30,043 34,354 +4.312**BTM Solar** 6,113 **BTM Solar** 6,351 +238Storage 2-Hour 6,736 Storage 4-Hour 4.000 **Battery Storage** 7.800 -2.936Offshore Wind Offshore Wind +6,48313,767 20,250 Land-based Wind Land-based Wind 9,755 19,712 +9,9571,100 2,810 +1.710Imports Imports 3,163 Demand Response + **Price Responsive** 2,618 -545 Flexible Load **Demand - Summer** 103,580 125,386 +21.806Total

Notes:

[1] Climate Change Phase II price responsive demand in the winter is 1,706 MW, 1,457 MW less than in *Grid in Transition*.

[2] Climate Change Phase II model assumes 8-hour storage.

Comparison of Transmission – Reference Case

Comparison of Reference Case 2040 Transmission Limits (MW)

Grid in Transition Resource Set		Climate Ch				
		Line Limit (MW)			Line Limit (MW)	Difference (MW)
Transmissi	on Interface	[A]	Transmissi	on Interface	[B]	[B] - [A]
Total East	E to F + E to G	5,500	Total East	E to F + E to G	12,508	+7,008
Total South	E to G + F to G	6,500	Total South	E to G + F to G	13,508	+7,008
Sprain Brook -	I to J	3,900	Sprain Brook -	I to J	8,768	+4,868
Dunwoodie	J to I	2,000	Dunwoodie South	J to I	2,000	+0

Notes:

[1] Climate Change Phase II resource set reflects limits when transmission constraints are relaxed to bind in less than 10% of the hours which would otherwise experience loss of load due to constrained transmission.

[2] Grid in Transition transmission limits are from The Brattle Group, Introduction to GridSim Presentation, March 6, 2020, Slide 21.

Comparison of Resources – Reference Case Difference (Climate Impact minus Grid in Transition)

Resource Type Zone F -203 **Dispatchable Total** +350 Nuclear +0 **Pumped Storage** -1 Grid-Connected Solar -12.682 **BTM Solar** -1.641 **Battery Storage** -2,577 Offshore Wind +0 Land-based Wind -0 +0 Imports **Price Responsive** +1 **Demand - Summer**

Nameplate Capacity (MW)

Nameplate Capacity (MW)

Resource Type	Zone GHI
Hydro	-2
Dispatchable Total	-318
Nuclear	+0
Pumped Storage	+0
Grid-Connected Solar	+237
BTM Solar	+709
Battery Storage	-677
Offshore Wind	+0
Land-based Wind	-0
Imports	+0
Price Responsive	-99
Demand - Summer	

Nameplate Capacity (MW)

Resource Type	Zone K
Hydro	+0
Dispatchable Total	+156
Nuclear	+0
Pumped Storage	+0
Grid-Connected Solar	+78
BTM Solar	-1,022
Battery Storage	-1,921
Offshore Wind	+1,276
Land-based Wind	+0
Imports	+0
Price Responsive	-541
Demand - Summer	

Zone k

Note: Differences in transmission limits calculated based on The Brattle Group, Introduction to GridSim Presentation, March 6, 2020, Slide 21.

Contact

Paul Hibbard, Principal Paul.Hibbard@analyisgroup.com Charles Wu, Manager Charles.Wu@analyisgroup.com